Kombination mit Wiederholung
Bei einer Kombination mit Wiederholung werden aus n Objekten k Objekte ohne Beachtung der Reihenfolge ausgewählt, wobei Objekte auch mehrfach oder auch gar nicht ausgewählt werden können.
Die folgende Aufgabe gehört zu diesem Aufgabentyp: Gummibärchen sollen in Tüten mit immer 8 Gummibärchen verpackt werden. Es kann aus fünf verschiedenen Sorten (Gummibärchenfarben) ausgewälht werden. Dabei dürfen Sorten mehrfach oder auch gar nicht gewählt werden. Es ist somit eine Tüte mit lauter roten Gummibärchen möglich ebenso wie eine Tüte bestehend aus 3 roten, 4 grünen und einem weißen. Wie viele Gummibärchenzusammenstellungen sind möglich?
Die Formel zur Berechnung der Gesamtzahl aller lautet:
Aber warum muss man bezogen auf die obige Gummibärchenaufgaben die Anzahl der Gummibärchen pro Tüte (also 8) mit der Anzahl der Sorten (also 5) addieren, dann 1 subtrahieren und dann durch 5! teilen? Dies wird im folgenden Video anschaulich erläutert.
Erklärvideo zum Grundtyp Kombination mit Wiederholung
Im folgenden Video wird mit Hilfe einer Tabelle erläutert, warum die obige Formel zur Berechnung der Anzahl aller Möglichkeiten gilt. Dazu werden die gewählten Gummibärchen mit einer 1 kodiert und die Sortentrennung mit einer 0. Achten Sie bei Betrachten des Videos insbesondere auf diese Zuordnung der 1 und 0. Sie werden erkennen, dass es immer eine 0 weniger als Sorten gibt.